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Abstract An open question concerns the spatial distribution of nodes that are suitable for high-order
Lagrange interpolation on the triangle and tetrahedron. Several current methods used to produce nodal
sets with small Lebesgue constants are recalled. A new approach is presented for building nodal distribu-
tions of arbitrary order, that is based on curvilinear finite-element techniques. Numerical results are shown
which demonstrate that, despite the explicit nature of this construction, the resulting node sets are well
suited for interpolation and competitive with existing sets for up to tenth-order polynomial interpolation.
Matlab scripts which evaluate the node distributions on the equilateral triangle are included.

Keywords Simplex · Interpolation · Nodes · Fekete · Lebesgue constant

1 Introduction

An open question concerns the spatial distribution of nodes that are suitable for high-order Lagrange
interpolation on the triangle and tetrahedron. There have been several attempts to produce such nodal
sets by direct and indirect methods that minimize the Lebesgue constant. We will summarize existing nodal
sets and then discuss a simple approach that yields nodes possessing surprisingly good Lebesgue constants
for up to tenth-order polynomial interpolation.

An early approach introduced in (1), involves choosing node locations that maximize the determinant
of the classical Vandermonde matrix defined in terms of a bivariate monomial basis up to seventh order.
The resulting nodes are referred to as Fekete nodes (2). This approach was extended up to thirteenth order
in (3), and further extended to nineteenth order in (4). The latter group used a steepest-descent algorithm
and explicit formulae for computing the gradient of the determinant of a generalized Vandermonde matrix.
Recently, (5) and (6) independently presented more sophisticated optimization techniques and revisited
the algorithms used to find nodal sets, starting with Fekete distributions and generating configurations with
improved Lebesgue constants.

An alternative, physically motivated, approach was taken in (7) based on the observation of Stieltjes
(8,9) that the location of the roots of certain Jacobi polynomials coincide with the equilibrium configuration
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of charges constrained to lie on the bi-unit interval. This observation immediately implies that the
Gauss–Lobatto–Legendre quadrature points coincide with equilibrium positions of these charges. Hest-
haven (7) extended this analogy to compute node distributions in the triangle by seeking equilibrium
positions of charges distributed in the triangle with line charges set on the boundary of the triangle.

Thus far, we have discussed node distributions resulting from optimizing the interpolation quality of
nodes by varying their location. By contrast (10) introduced node distributions that have explicit formulae
for their construction. This is of great practical interest, as well as reveals basic structural properties of
the distributions that are responsible for the interpolation quality demonstrated by the optimization-based
node sets discussed above. A similar philosophy and approach was used in (11).

In this paper, we introduce a simple construction that allows us to produce node distributions for arbi-
trary-order interpolation. The resulting distributions are comparable with all of the above distributions up
to tenth order. We will describe a formula that has one tunable parameter and completely describes some
possible nodal distributions of any given order. The basic philosophy is to replace the task of creating a
nodal distribution with the closely related task of building a coordinate-warping transformation for the
triangle. This is a familiar problem faced when using curvilinear finite elements (12). New contributions
of this work include the application of the warp & blend transform to create nodal elements, and the
construction of coordinate transforms that do not actually change the overall geometry of the triangle.

We settled on a one-parameter family of nodes, for simplicity and because our experiments revealed sur-
prisingly good interpolation properties when the parameter is tuned in a straightforward manner. We shall
describe a simple generalization to the tetrahedron, and finally present experimental results demonstrating
the effectiveness of the node distributions.

2 Formulation

For convenience, we consider an equilateral reference triangle with edges of length two centered at the
origin. In Fig. 1, we show the location of the vertex nodes and define the so-called barycentric coordinates.
These are a triad of coordinates for a point (x, y) related to the areas of the triangles created by partitioning
the triangle into three subtriangles, each containing two edge vertices and the point itself as a third vertex.

We can describe any point (x, y) in the equilateral triangle as a linear combination of the barycentric
coordinates,

Fig. 1 Triangle vertex
coordinates for an
equilateral triangle, and
definition of the
barycentric coordinates
for a point (x, y) in the
triangle
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(x, y) = λ2v1 + λ3v2 + λ1v3, (1)

with the restriction that λ1 + λ2 + λ3 = 1.
In order to perform polynomial interpolation, we require a finite polynomial space. For this study, we

chose the space of polynomials of total degree at most p on the triangle T, denoted by

Pp(T) =
〈
xiyj|0 ≤ i + j ≤ p

〉
.

The dimension of this space is Np = (p + 1)(p + 2)/2. A convenient, orthogonal and stably computable
basis for this space was proposed in (13). The basis functions are:

φnij

(
λ1, λ2, λ3

)
= P0,0

i

(
λ3 − λ2

λ3 + λ2

) (
λ3 + λ2

)i
P2i+1,0

j

(
2λ1 − 1

)
, (2)

where

nij = 1 +
{

(i + j) (i + j + 1)

2

}
+ j, 0 ≤ i, j; i + j ≤ p. (3)

Given Np interpolation points on the triangle
{
λ1

n, λ2
n, λ3

n |1 ≤ n ≤ Np
}
, we can construct a generalized

Vandermonde matrix

Vnm = φm

(
λ1

n, λ2
n, λ3

n

)
, (4)

which provides us with a compact way of representing the pth-order, polynomial, Lagrange interpolating
functions

{
ln |1 ≤ n ≤ Np

}
associated with the Np interpolation points. Assuming the generalized Vander-

monde matrix is invertible, we can use the following result

ln
(
λ1, λ2, λ3

)
=

m=Np∑
m=1

(
V−1

)
mn

φm

(
λ1, λ2, λ3

)
. (5)

This definition is not required to generate the warp & blend nodal sets . However, it is useful in computing
their Lebesgue constant, as described in the next section.

2.1 Lebesgue constant

We first introduce the Lebesgue function

λ
(
λ1, λ2, λ3

)
=

n=Np∑
n=1

∣∣∣ln
(
λ1, λ2, λ3

)∣∣∣ , (6)

which is unitary at the interpolation nodes and define the Lebesgue constant, �p, on a triangle T

�p = max
(λ1,λ2,λ3)∈T

λ
(
λ1, λ2, λ3

)
.

The Lebesgue constant is considered an interpolation quality indicator for a set of nodes because of its
appearance in the following error estimate

‖u − Ipu‖∞ ≤ (1 + �p) inf
ũ∈Pp(T)

‖u − ũ‖∞,

where Ip is the pth-order interpolation operator based on the node set in question. This result is easily
derived by observing that, in fact, the Lebesgue constant is also the operator max-norm of Ip. This result
puts an upper bound on the worst possible pointwise error for the polynomial interpolant relative to the
best possible pointwise polynomial approximation available at the same order. It is thus reasonable to
construct a set of nodes whose Lebesgue constant is as small as possible.

When reporting Lebesgue constants later in this paper, we actually report approximate values. We have
applied the following directed random sampling approach in an attempt to find the global maximizer of
the Lebesgue function:
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Fig. 2 Isocontour plots of the Lebesgue functions for three different sets of nodes (α optimal warp & blend nodes computed
in Sect. 3.1)

1. Make a list of current sample points of N = 10,000 randomly chosen in the triangle.
2. For i = 1 to 20:

(a) Evaluate the Lebesgue function at the list of current sample points.
(b) Find the 10% of sample points with the largest Lebesgue function value.
(c) For each of the top 10% sample create 10 new random sample locations within a box of side (1/2)i−2

centered at the sample.
(d) Replace the list of current sample points with a combination of the top 100 samples points and the

newly created sample points that happen to be located inside the triangle.

3. Evaluate the Lebesgue function at the list of current sample points.
4. Report the largest value as the approximate Lebesgue constant.

This sequence requires approximately 200,000 evaluations of the Lebesgue function, which is consider-
able; fortunately we do not need to evaluate this number frequently, even in the optimization process to
be described later. A modest workstation completes the computation in short order. In experiments, this
algorithm reported reliable estimates of the Lebesgue constant. A more efficient algorithm was reported
recently in (6).

The piecewise smoothness and limited number of maxima of the Lebesgue function contribute to the
success of the algorithm. In Fig. 2, we show isocontours of the Lebesgue function for sets of nodes at
different orders. As expected the nodes are located at minima of the Lebesgue function. We also note that
there are visible creases in the function, which lie on curved lines joining the original equi-spaced nodes.
Finally, in general, there appears to be a limited number of maxima associated with curvilinear triangles
joining nearby nodes.

2.2 Nodal distribution construction

Given any set of Np node coordinates
{
xi | 1 ≤ i ≤ Np

}
, it is always possible to construct a 2-vector function

f defined on the triangle with the property that:

f
(
xe,i) = xi for all 1 ≤ i ≤ Np (7)
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where
{
xe,i | 1 ≤ i ≤ Np

}
is the set of equi-spaced nodes. Furthermore, there is a unique 2-vector function

in Pp(T) × Pp(T) that satisfies Eq. 7.
This simple observation frames the question of constructing a set of nodes in terms of such a transform.

Our first experiments in constructing an isoparametric polynomial transform yielded nodes that possess
surprisingly good Lebesgue constants. Subsequently, we relaxed the condition that the transform be of the
same order as the original equi-spaced nodal set, and we were able to compute nodal sets with improved
Lebesgue constants.

To narrow down the choice of how to construct the isoparametric transform, we require the following
properties:

1. The image of the equi-spaced nodes on an edge should be a Gauss–Lobatto–Legendre distribution.
2. The transform should be bi-jective.
3. The transform should be symmetric with respect to the symmetries of the origin equilateral triangle.
4. The transform should be explicit in the barycentric coordinates.

We can view the task of creating such a transform as an exercise in creating an isoparametric curvilinear
finite element (12). However, in this context, we are creating a curvilinear element by deforming the
reference triangle without changing its outline geometry. For clarity, we consider the deformation required
of the lower edge of the equilateral triangle and repeat a similar deformation for the other two edges.

Given the locations of the p+1 point Gauss–Lobatto–Legendre quadrature nodes on the biunit interval:
{xi | 1 ≤ i ≤ p + 1}, we construct a one-dimensional deformation function w : [−1, 1] → [−1, 1] such that

w (x) =
i=p+1∑

i=1

(
xi − xe,i)

j=p+1∏
j=1,j �=i

(
x − xe,j

xe,i − xe,j

)
,

where xe,i = (−p + 2i − 2)/p. This is nothing more than the Lagrange interpolant function which interpo-
lates the deformation required for mapping the equi-spaced points to the the GLL points.

In Fig. 3, we plot x+w (x), i.e., the effect of the warp function. It is interesting to note that the coordinate
warping for p = 3, 5, 20 are all very similar.

We extend the edge warp into the triangle by blending in the edge normal direction. In preparation
for satisfying the symmetry requirements on the transform, we express the deformation transform for the
blended lower edge in terms of the barycentric coordinates:

Fig. 3 Warp functions
x + w(x) used for
p = 3, 5, 20 designed to
interpolate the
Gauss–Lobatto–Legendre
node locations at equally
spaced nodes in
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w1
(
λ1, λ2, λ3

)
= w
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)
, (1, 0) (8)
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)
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(
2λ3
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) (
2λ2

2λ2 + λ1

)
. (9)

Multiplying these two together, we achieve a warp & blend transform g1 = b1w1 that satisfies our coordinate
transform requirements for edge one. The apparent singularities in the blending function at λ1 = λ3 = 0
and also λ1 = λ2 = 0 are, in fact, removed in the product because both locations coincide with roots of w1.
Thus we trivially observe that this warp & blend function is a 2-vector polynomial of degree at most p.

The warping functions for the other two edges can be expressed by permuting λ1, λ2, λ3

w2
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)
= w
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)(
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2
,

√
3
2

)
, (10)
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√
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)
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The associated blending functions are

b2
(
λ1, λ2, λ3

)
=

(
2λ3

2λ3 + λ2

) (
2λ1

2λ1 + λ2

)
, (12)

b3
(
λ1, λ2, λ3

)
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(
2λ2

2λ2 + λ3

) (
2λ1

2λ1 + λ3

)
. (13)

Finally, we can express the coordinate shift as

g
(
λ1, λ2, λ3

)
= b1w1 + b2w2 + b3w3. (14)

In Sect. 3.1, we show results for this construction. However, given the flexibility of the construction of
such a transform, we relaxed the constraint that the transform should be isoparametric. Examining the
node descriptions, we observe that the nodes did not cluster particularly strongly around the triangle edges.
This is because the blending functions drop to zero at the edges of the elements. A simple modification to
the blending yields node sets with potentially better Lebesgue constants

g
(
λ1, λ2, λ3

)
=

(
1 +

(
αλ1

)2
)

b1w1 +
(

1 +
(
αλ2

)2
)

b2w2 +
(

1 +
(
αλ3

)2
)

b3w3.

In Fig. 4, we show plots of the vector functions g1, g2, g3 sampled at equi-spaced points in the triangle.
In Sect. 6, we list three Matlab functions: gll.m, warpfactor.m, nodes.m that compute the Gauss–
Lobatto–Legendre nodes, the warping factor with end-roots deflated, and the warp & blend nodes for the
triangle, respectively.

2.3 Tetrahedron

The construction of the coordinate transform can be generalized for the equilateral tetrahedron. For each
face of the tetrahedron, we use the transform constructed for the triangle. These transforms are then
blended into the interior of the tetrahedron. The vector warp functions for each of the four faces are:

w1 = g1

(
λ2, λ3, λ4

)
t1,1 + g2

(
λ2, λ3, λ4

)
t1,2, (15)

w2 = g1

(
λ1, λ3, λ4

)
t2,1 + g2

(
λ1, λ3, λ4

)
t2,2, (16)

w3 = g1

(
λ1, λ4, λ2

)
t3,1 + g2

(
λ1, λ4, λ2

)
t3,2, (17)

w4 = g1

(
λ1, λ3, λ2

)
t4,1 + g2

(
λ1, λ3, λ2

)
t4,2, (18)
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Fig. 4 (a–c): Warp &
blend functions for each
of the three edges,
constructed with warping
that reproduces a ten
point Gauss–Lobatto–
Legendre quadrature.
(d) Sum of warp & blend
functions for the three
edges

a) b) c)

d)

where
(
λ1, λ2, λ3, λ4) are the barycentric coordinates for the tetrahedron, the subscripts on the warp & blend

g functions refer to the components of these functions and t f ,1, t f ,2 are two vectors forming orthogonal
axes in the plane of face f specified for the origin centered equilateral tetrahedron by
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The four, scalar, face, blending functions are given by
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(
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The combined warp & blend deformation is then

g
(
λ1, λ2, λ3, λ4

)
= b1w1 + b2w2 + b3w3 + b4w4. (24)

As with the triangle, we can increase the clustering of nodes near the boundary faces by modifying the
blending functions

g
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)
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(
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(
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(
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)
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1 +
(
βλ4

)2
)

b4w4

for some parameter β. To retain a one-parameter set of nodes, that are easily optimized, we arbitrarily
choose β = α. There may be some benefit in allowing α and β to differ, and these options are being
evaluated in ongoing studies.

3 Results

3.1 Triangle nodes

For the following experiment, we constructed the warp & blend nodes in two ways. First, we built the
nodes with the blending parameter α set to zero. Next, we used the Matlab function fminbnd, which is
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an optimization algorithm based on golden-section search and parabolic interpolation [14, 15] to choose
an α which at least locally minimizes the Lebesgue constant computed with the algorithm described in
Sect. 2.1, but with twenty-five-hundred initial samples and 10 iterations. This approach is reasonable, given
the uncomplicated dependence of the Lebesgue constant on α, as demonstrated in Fig. 5 where we show
the Lebesgue constant plotted as a function of α for p = 8 nodes.

After an optimal α was found, we recomputed the Lebesgue constant with 10,000 initial samples and 20
iterations. The values of α reported by fminbnd for a range of polynomial orders are reported in Table 7.

In Table 1, we compare the Lebesgue constants for these two sets of nodes with the nodes in (10) which
are similarly given by explicit formulae. We see that the unoptimized nodes have comparable Lebesgue
constants to the Blyth and Pozrikidis nodes (10). The optimized nodes show significant improvement.
Furthermore, in Table 2, we report condition numbers for the generalized Vandermonde matrices (see
Eq. 4) computed both with the Blyth and Pozrikidis nodes and with the warp & blend nodes. The condition
number of the generalized Vandermonde matrix is important because of the pivotal role that the inverse
of this matrix plays in constructing a Lagrange interpolating basis for the nodes as shown in Eq. 4. The
condition numbers for both node types are comparable and indicate that we should expect to be able to
compute the Lagrange interpolating functions with up to 13 digits of accuracy in double precision based
arithmetic.

The warp & blend nodes are also comparable in interpolation quality to other classes of symmetric
nodes that have Gauss–Lobatto–Legendre edge node distributions. In Table 3, we show comparisons with
Roth’s improved version of the Chen–Babuska nodes as well as his improved Fekete nodes (6). In addition,
we include results from Heinrichs’s approximate Lebesgue constant optimized nodes (5), and Hesthaven’s
electrostatics nodes (7).

In Fig. 6, we show optimized warp & blend node distributions for the triangle for a range of interpolation
orders . Up to tenth order the distributions are very similar to the Fekete, electrostatic, Lebesgue-opti-
mized, and other node sets currently known. It is also clear that, despite the simplicity of the node formula,
it captures the basic behavior of all these other more complicated approaches.

Given the competitive Lebesgue constants of the new node distributions, it is also apparent that,
although seemingly ad hoc, the new approach is as successful (up to tenth order) as most existing meth-
ods that instead involve computing node locations by optimizing proxies for the Lebesgue constant. One
exceptional approach used in (6) is designed to optimize node locations by minimizing an efficiently and
reliably computed approximation for the Lebesgue constant. One might view the new approach in this

Fig. 5 The Lebesgue
constant as a function of α

for p = 8
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Table 1 Lebesgue constants for Pozrikidis nodes compared with warp & blend nodes (computed with the algorithm given in
Sect. 2.1)

Node Equi-spaced Blyth and Warp & blend Warp & blend
class Pozrikidis (10) α = 0 α optimized

�3 2.27 2.11 2.11 2.11
�4 3.47 2.66 2.66 2.66
�5 5.45 3.14 3.12 3.12
�6 8.75 3.87 3.82 3.70
�7 14.35 4.66 4.55 4.27
�8 24.01 5.93 5.69 4.96
�9 40.92 7.39 7.02 5.74
�10 70.89 9.83 9.16 6.67
�11 124.53 12.92 11.83 7.90
�12 221.41 17.78 16.06 9.36
�13 397.70 24.53 21.71 11.47
�14 720.70 34.62 30.33 13.97
�15 1315.9 49.46 42.48 17.65

Table 2 Condition
numbers for generalized
Vandermonde matrices
formed using the
orthonormalized basis
(13)

Node Blyth and Warp & blend
class Pozrikidis (10) α optimized

κ3 5.9028 5.9028
κ4 6.7763 6.7769
κ5 7.7280 7.8450
κ6 9.8423 9.5913
κ7 11.4944 11.1597
κ8 14.2101 13.8858
κ9 18.0994 16.8957
κ10 23.6271 21.6675
κ11 31.4576 27.4011
κ12 43.3978 36.1156
κ13 61.0569 47.1973
κ14 88.7706 63.6592
κ15 130.2558 85.6918

work as a hybrid method that directly optimizes the Lebesgue constant but restricts the feasible node
distributions to those given by a specified explicit formula, which has one free parameter.

In Table 3, we reported Lebesgue constants for existing sets of nodes that have Gauss–Lobatto–Legendre
distributions and are symmetric. Roth (6) and Heinrichs (5), both created nodal sets with improved Lebes-
gue constants by dropping these conditions. We achieved minor improvements in the Lebesgue constant
for the warp & blend nodes by changing the edge warp (i.e., changing the required nodal distributions on
the edge) to an extended Chebychev distribution.

The warp & blend node sets are straightforward to compute at any order. However, as shown in Table 1,
the Lebesgue constant for these nodes grows relatively quickly above p = 10. As has been reported for
Fekete nodes and Roth’s Lebesgue-constant optimized nodes, there is a significant change in the types of
distribution results after optimization. The structure of their optimized interior node distributions becomes
visibly less regular as the polynomial order is increased. This immediately raises the possibility that our
explict formulae may benefit from additional terms and perhaps more parameters to capture the extra
dynamic in the coordinate transform.
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Table 3 Comparison of Lebesgue constants for a range of current symmetric nodal distributions on the triangle with Gauss–
Lobatto–Legendre distributions on edges

Node Warp & blend c Chen–Babuskaa Feketea Heinrichsb Hesthavenc

class α optimized

�3 2.11 2.111 2.113 – 2.113
�4 2.66 2.692 2.729 – 2.588
�5 3.12 3.301 3.611 – 3.196
�6 3.70 3.791 4.171 3.87 4.075
�7 4.27 4.391 4.928 – 4.780
�8 4.96 5.089 5.905 – 5.855
�9 5.74 5.918 6.803 5.89 6.886
�10 6.67 7.085 7.852 – 8.466
�11 7.90 7.266 7.907 – 10.144
�12 9.36 8.669 8.472 7.59 12.637
�13 11.47 9.291 9.279 – –
�14 13.97 8.988 9.959 – –
�15 17.65 10.306 10.021 9.25 –

Lebesgue constants computed by: a (6), b (5), c by algorithm in Sect. 2.1

Fig. 6 Node distributions for p = 4, 6, 8, 10, 12, 14. The black lines represent the effect of the warp & blend transform on the
lines of constant λ1, λ2, or λ3 that connect the undeformed equi-distributed nodes
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3.2 Tetrahedron nodes

The number of different node distribution types available for the tetrahedron is markedly smaller than
those known for the triangle. In Table 4, we show Lebesgue constants for equally spaced nodes, our un-
optimized and optimized warp & blend nodes, Hesthaven and Teng’s electrostatic nodes, and the nodes of
Chen and Babuska. We are again surprised that the warp & blend nodes are so competitive with available
node sets. In Fig. 7, we show α optimized warp & blend node sets for the tetrahedron for p = 6, 8, 10, 12.

4 Interpolation tests

We have thus far used the Lebesgue constant of nodal sets as an interpolation quality indicator. To further
compare some of the nodal sets already discussed, we adopt two interpolation tests proposed in (5). In
that paper the nodal sets were used to interpolate the following two functions on the bi-unit triangle

Table 4 Comparison of Lebesgue constants for a range of current nodal distributions on the tetrahedron

Node warp & blend Hesthaven and Chen and Equi-spaced
class α optimized Teng (16) Babuska (17)

�4 4.07 4.0774 4.1120 4.88
�5 5.32 5.3470 5.6158 8.09
�6 7.01 7.3391 7.3632 13.66
�7 9.21 9.7588 9.3659 23.38
�8 12.54 13.626 12.311 40.55
�9 17.02 18.901 15.659 71.15
�10 24.36 27.190 – 126.20
�11 36.35 – – 225.99
�12 54.18 – – 409.15
�13 84.62 – – 742.69
�14 135.75 – – 1360.49
�15 217.70 – – 2506.95

Fig. 7 α-optimized warp & blend tetrahedral node distribution for p = 6, 8, 10, 12
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Table 5 Maximum interpolation errors for Test I computed with directed random search excluding (∗) results which are
from (5)

p Blyth and Warp & blend Heinrichs (5) Hesthaven (7)
Pozrikidis (10)

6 5.7760e−005 5.3819e−005 5.6005e−005 5.9476e−005
9 3.8020e−008 2.7592e−008 2.5150e−008 3.3607e−008

12 1.0403e−011 5.1230e−012 1.7273e−012 –
15 1.8596e−015 1.1380e−015 6.25e−015 (∗) –
18 1.7087e−015 1.1519e−015 1.28e−014 (∗) –

Table 6 Maximum interpolation errors for Test II computed with directed random search excluding (∗) results which are
from (5)

p Blyth and warp & blend Heinrichs (5) Hesthaven (7)
Pozrikidis (10)

6 6.9077e−004 6.4327e−004 6.5509e−004 7.2943e−004
9 1.0526e−006 7.6282e−007 6.8984e−007 9.6364e−007

12 2.2461e−010 1.1033e−010 4.4139e−011 –
15 4.9061e−014 1.8077e−014 3.09e−014 (*) –
18 1.6029e−014 5.4401e−015 7.71e−014 (*)

T = {−1 ≤ x, y; x + y ≤ 0}:
Test I: u (x, y) = (x + 1) (y + 1)

(
ex+y − 1

)
,

Test II: u (x, y) = (x + 1) (y + 1) (cosh (x + y) − 1) ,

where we used a variation of the algorithm described in Sect. 2.1 to compute an approximation of the
maximum pointwise error of the p = 6, 9, 12, 15, 18 polynomial interpolant for these two functions.

In Table 5, we compare the maximum pointwise errors for the warp & blend nodes compared with the
nodal sets of (5,7,10) applied to Test I. We see that, in general, the ratio between errors is related to their
relative Lebesgue constants. The non-symmetric p = 12 nodes of Heinrichs are noticeably better than
the other p = 12 node sets, this we attribute to their smaller Lebesgue constant. We included results for
p = 15, 18 to complete the comparison with Heinrichs’s results. However, it is clear from the results and
inspecting the solution error that the error is dominated by finite precision effects.

In Table 6, we show similar comparisons for Test II and note briefly that results are consistent with
Test I. As before, the warp & blend nodes degrade in performance for p = 12, but this is consistent with
the Lebesgue constant quality measure for these nodes being larger than Heinrichs’s nodes (5).

5 Conclusions

In conclusion, we have presented a simple and geometrically motivated way of spatially distributing inter-
polation nodes in a triangle and tetrahedron. The method we used was inspired by techniques employed
in the creation of curvilinear finite-element methods and represents a new approach and perspective on
the problem of creating these nodal sets.

The new warp & blend nodes were shown to have Lebesgue constants which are better than or compara-
ble with all existing node sets up to at least tenth-order interpolation. We showed test interpolation results
that give further confidence on the quality of the warp & blend nodes for interpolation. The simplicity of
the construction suggests we have captured the essence of the existing nodal distribtions in a simple way.
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Finally, we have included short and simple Matlab scripts which generate the nodal sets, on a reference
equilateral triangle, for arbitrary order and also reflect the simplicity of their construction.

Acknowledgements The work of the author was partially supported by the NSF under contract NSF-CNS-0324911, NSF
under contract NSF-DMS-0512673, and AFOSR under contract FA9550-05-1-0473.

Appendix A

A.1 Gauss–Lobatto–Legendre nodes

To compute the location of the Gauss–Lobatto–Legendre nodes on the biunit interval, we follow Numeri-
cal Recipes (18). Included here is a Matlab script that uses Newton–Raphson iteration, to find the roots of(
1 − x2) P0,0

p (x). Original Matlab implementation is provided by Greg von Winckel.

% (gll.m)
% input: polynomial order
% output: p+1 point Gauss-Lobatto-Legendre nodes.

function x=gll(p)

% polynomial order + 1
N=p+1;

% Use the Chebyshev-Gauss-Lobatto nodes as the first guess
x=cos(pi*(0:p)/p)’;

% The Legendre Vandermonde Matrix
V=zeros(N,N);

xold=2;

% Newton-Raphson iteration
while max(abs(x-xold))>eps
xold=x;

V(:,1)=1;
V(:,2)=x;
for k=2:p
V(:,k+1)=( (2*k-1)*x.*V(:,k)-(k-1)*V(:,k-1) )/k;
end

x=xold-( x.*V(:,N)-V(:,p) )./( N*V(:,N) );
end

A.2 Edge warp-factor function

We list a Matlab function that computes g as described in Sect. 2.2:

% (warpfactor.m)
% input: polynomial order
% input: vector of node locations to interpolate
% input: location of nodes to interpolate warp function at
% output: warp function at xout, with -1,+1 roots deflated
function warp = warpfactor(p, xnodes, xout)

warp = zeros(size(xout));
xeq = linspace(1,-1,p+1)’;
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for i=1:p+1
d = (xnodes(i)-xeq(i));
for j=2:p

if(i˜=j)
d = d.*(xout-xeq(j))/(xeq(i)-xeq(j));

end
end

% deflate end roots
if(i˜=1)
d = -d/(xeq(i)-xeq(1));

end
if(i˜=(p+1))
d = d/(xeq(i)-xeq(p+1));

end

warp = warp+d;
end

0.3 A warp & blend node construction

We list a Matlab function that computes the warp & blend nodes on an equilateral triangle. It depends on
gll.m and warpfactor.m listed above.

% (nodes.m)
% input: p=polynomial order of interpolant
% input: alpha=tunable warping parameter
% output: X,Y vectors of node coordinates in equilateral triangle
function [X,Y] = nodes(p, alpha)

% total number of nodes
N = (p+1)*(p+2)/2;

% 1) compute Gauss-Lobatto-Legendre node distribution
gaussX = gll(p)

% 2) create equidistributed nodes on equilateral triangle
L1 = zeros(N,1); L2 = zeros(N,1); L3 = zeros(N,1);
sk = 1;
for n=1:p+1
for m=1:p+2-n
L1(sk) = (n-1)/p;
L3(sk) = (m-1)/p;
sk = sk+1;
end
end
L2 = 1-L1-L3;
X = -L2 + L3;
Y = (-L2-L3+2*L1)/sqrt(3);

% 3) compute blending function at each node for each edge
blend1 = 4*L2.*L3;
blend2 = 4*L1.*L3;
blend3 = 4*L1.*L2;

% 4) amount of warp for each node, for each edge
warpfactor1 = warpfactor(p, gaussX, L3-L2);
warpfactor2 = warpfactor(p, gaussX, L1-L3);
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warpfactor3 = warpfactor(p, gaussX, L2-L1);

% 5) combine blend & warp
warp1 = blend1.*warpfactor1.*(1 + (alpha*L1).ˆ2);
warp2 = blend2.*warpfactor2.*(1 + (alpha*L2).ˆ2);
warp3 = blend3.*warpfactor3.*(1 + (alpha*L3).ˆ2);

% 6) accumulate deformations associated with each edge
X = X + 1*warp1 + cos(2*pi/3)*warp2 + cos(4*pi/3)*warp3;
Y = Y + 0*warp1 + sin(2*pi/3)*warp2 + sin(4*pi/3)*warp3;

Table 7 Locally optimal
choices of the blending
parameter α

Element Triangle Tetrahedron

α3 1.4152 0.0000
α4 0.1001 0.1002
α5 0.2751 1.1332
α6 0.9808 1.5608
α7 1.0999 1.3413
α8 1.2832 1.2577
α9 1.3648 1.1603
α10 1.4773 1.0153
α11 1.4959 0.6080
α12 1.5743 0.4523
α13 1.5770 0.8856
α14 1.6223 0.8717
α15 1.6258 0.9655

0.4 Optimized choice of the α blending parameter

Table 7 indicates values, to four decimal places, for the α parameter that the Matlab function fminbnd
found as possible minimizers for the Lebesgue constant computed as described in Sect. 2.1.
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